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Sunchronous motions of objects with one degree of freedom interacting by way of weak
constraints are considered in this paper, The initial system of equations with a small
parameter is analogous to that studied in Sect, 3 of [1]. Here, however, it is assumed that
the equations defining the generating phases and the synchronous frequency constructed
from the first order terms are satisfied identically, This leads to a particular case of the
small parameter method requiring the higher order approximations to be considered. In
this paper synchronous modes in a system of objects have been determined and the neces-
sary and sufficient conditions for their stability obtained, The technical requirements
for investigating similar systems are discussed,

In a particular case when the system is conservative in the first approximation, the
conditions of existence and stability become identical to those obtained in [1],

1, The basic system, Determination of synchronous solutions,
Consider the problem of weak interactions between substantially nonlinear objects, in
the absence of external forces, described by the following system with a multidimensional
rapidly rotating phase

(Ph.: (O + ”Xk(l) ((phv (Dh) + P‘zXh@) ((Ph'--a Pnr @1seery Op, V) +
+ Xy, een, Py Opyee. 0n, V) + phi..

Wy = l“’Y§fI) ((ka mk) + M2Y§f2) ((plv e Ppy 01, 0L L, O, V) +
+!’L3Y§€3)((p1»'"1(pn’0)1""1('0nvv)+p‘4-" (k=1’2""’n) (11)

V=AV + Fi (@11, Pns @0, ©3) + B Fy (Q15000s Py Opyeery @y V) + p2...

Here @, wr (kK = 1, 2,..., n) denote, respectively, the phase and frequency of the
kth isolated object, v is a N -dimensional coordinate vector of the supporting system
and A is a matrix with constant components, All functions in (1,1) are assumed to be
2gn-periodic in Qq,...; @pand p > 0 is a small parameter, A superscript dot denotes
differentiation with respect to time,

System (1,1) is obtained from the equations of the problem dealing with synchroniza-
tion of almost conservative objects with one degree of freedom [1] by supplementing
the equations of motion of the objects by certain terms depending on the partial coordi-
nates and impulses only, and proportional to the quadratic root of the small parameter,
The additional terms are assumed to be such that the mean value of one of them obtained
for the generating approximation and averaged over a period, is equal to zero,

Physical prerequisites for investigation of a similar system are as follows.

Assume that the synchronized objects are of the mechanical vibrator type, It is neces-
sary that uniformity in the rotation of the asynchronous motor shaft is kept at a suffici-
ently small level, The latter requirement is reflected in the assumption that all the
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terms in the equations of motion describing the moments on the vibrator shaft are small,
These moments can be assumed to be of varying order of smaliness, It may happen that
the mean value of one of the moments obtained in the generating approximation,averaged
over a period, is equal to zero, In this case it is possible to obtain a system admitting
synchronous solutions by assigning a certain order of smallness u to all the remaining
moments, Such assumptions must be made when dealing with the problem of synchroni-
zation of Behrens oscillation exciters, Generalization of such cases yields Eqs, (1.1).

Under certain conditions defined below, the system (1, 1) allows a synchronous solution
analytic in i of the form e = Pro - BOE - POk + B

W = Ogy + POR + POk + B, v =vy+ pvy+ ... (1.2)

in an interval 0 << p << By

Introduce now the dimensionless time T = V!, where v is the unknown frequency of
the synchronous mode assumed to exist in the form of a series v = v, + pv; + p2...
Equations (1, 1) then become

9r" = Por + p BXD — v PP wul + p? BX® —
— vif? X, — (vof? — v, * B%) 0pl + p® [BX,® —
— vif? X5 — (vf% — vPP%) XD — (v B Pt — 2vivof® + v el + ..
oy = pf ¥V, + p? [BY® — v p2Y, 0] +
+ pPBY O — v Y, — (vf? — v 2B%) Y, ] + ... (1.3)
Vi=pAv+F)+plpF,—vp(Adv+F)l+..
where
B = 1/v,

We find now the synchronous solution of (1, 3) in the form of (1,2), The generating
system admits an n -parameter family of solutions of the form
Qpo = T _{"‘ Sy, Wxre — v(}k? V0= VG (T, al""? (o 25N 'Vo, le?"" an)
where v, is a solution of the last equation of (1,3) 2m-periodic in T with = 0 and

Vo1 == Voge= ... = Vo == Voi O4,..., &, are the generating phase shifts, It is also
assumed that the eigenvalues % of the system

ww = B4 w (1.4)

lie outside the circles with centers at in (n is an integer) and with a radius of the order
of p. This is equivalent to the assumption that resonance with respect to coordinates v
is absent,

The first approximation system has the form

Qri’ = Bor + B (X))o — BV,
ﬁ)hl, = 5 (Yk(l))o
vy = BAv, +PF, + B (Fa)o — prvidv, — B2V (Fy)o (1.9

Here and below the parentheses with the subscript zero denote that the quantities are
computed for the generating solution,
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As stated above, the case under consideration is that of
PP (vor) = S Y P),dv = (YP),> =0 (1.6)

Therefore the first approximation to the required synchronous solution is periodic for
any value of the generating phases and, that the condition of existence of synchronous
modes cannot be obtained by considering the first approximation system, This means
that here we are dealing with a particular case of the small parameter method and,
unlike in [1], higher approximations must be taken into consideration,

Integrating (1, 5) gives

o =pUp+v, — B, @p = BTy + BV, + ap (1.7)
Vy = Vi (Qgs-0y Xpy Vor Vogseeos Von)
Vo1 == woo == Vg = ¥, Oy, = const
ro=\v,dr, v,={1x,®), — R ar
Un = (Ta®)gdr, (T = V) = U =0 (1.8)

Here v, is a solution, 2gy.periodic in T, of the last equation of (1, 5).
Conditions of existence of periodic functions @, have the form

<(0Ym ) (B2 + BV + ak1)> + <( 4% ) BUy + v, — R(ﬂ)> 4 PP —

where

(1 9
PP = (YR (1.10)

Using condition (1, 6} we obtain

(). () > (), 0> o

Let us now consider condition (1,11) in greater detail, Using (1, 8) and the fact that
the functions (Y ,(), and I'j, are 2n-periodic in @y,..., @, i.e, in T and have no
constant terms, we find, on integrating by parts, that Eq. {1.11) can be obtained in the

T p= e + 8¢S TE) U P (a2)

where we must set Vy; = Vgg = ... = Vg = V.

This constitutes the conditions of existence of a synchronous mode in an interconnected
system of objects, Since the initial equations are autonomous, it follows that (1,12)
will only yield v,and (n — 1) generating phase differences such ase.g, «; — a,,or
®p-1 — Q,,with an arbitraty value assigned to one of ¢;.

Let us calculate the second approximations to ¢pand o .

Using relations of the form

axp e )
<(Wh)o Vk> = R — (XP)% (1.13)

we obtain
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Pr = 8 {12y FwoM, — /(LK M) ] d
4 dlezUk - B‘z (\,1 R(l)) h + sz(z) . B3v ]-«k

4 BBE, + BFy + Bo [(X‘;’)o — RP) + BVE +
51
+B vy — R —a—v—k — R, — Bo, Vi 4 oy (1.14)
K

Oy = B3, + BEM, + Botiy (Y)o -+ B (vi — H“’) I o BU® — B, U, —
33(1) X(I}
— By — B O — (v ( -) U -

. Bz<(axtl) )0 (T + VOVk)> — R® L YaVo

where

L= e[ (50) @t —<(F) vt 70

oy TV N
kaSdT[( a(!)k )GU;(-—-\( F )DU);/}

k
P = @dv, =0, P={0,Pd (1.1

By = Sae [ (S 0y s — (o) @t wib) |

B IR AN
po= o] (22) 00— (S22) )]

2, Stability of synchronous solutions, The synchronous modes having
been found, their stabilities may now be analyzed. For the generating solution the char-
acteristic equation of the system in variations of (1.1) hasa 2n-tuple unique root, i, e.
2n. characteristic indices in the variational equations are critical [2], Ultimately the
stability of the synchronous solutions (1,2) is defined by the signs of the real parts of the
critical characteristic indices, and hence only the latter quantities will be calculated,

Following [1] we eliminate from our variational system the variations of coordinates
of the supporting system and seek them in the form

dv = ) [Ex (T, 1) 80y - i (T, ) 004] 2.1)

k=1

where &, Mp (kK = 1, 2,..., n) are2n-periodic vector functions of v. Seeking §and
% in the form of series in p
E, = 5,0 4 pB® 4 plo.,  Ma= Mm@ 4+ pn® + pfo 22)
we obtain [1]
80 =

6v0 0) — aV() _ 62\70 . . 2 iy
oy [ 1 ( + gkr gk = Bvoé‘ak (k=1,2,..., n) ( )

Elimination of the variations 8V in accordance with (2.1) yields a system of 2n
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equations in ¢, and 8w  (which is not written out in full), The characteristic indices
whose total number is 2r are equal to the critical characteristic indices of the inijtial
equations in variations, The 2n~tuple root of the characteristic equation of this system
has the corresponding elementary, nonsimple quadratic divisors of the generating solution,
Therefore [3] the critical indices can be expanded either in whole powers of u'z, or in
whole powers of .

Direct computation of the coefficients accompanying u'2, p', y% gives their values
equal to zero, It can further be shown that all the remaining terms containing fractional
powers also vanish, The proof is particularly simple when the initial system is conserv-
ative to within the terms of the order of 2

Furthermore, by a simple change of variable this system can be reduced to another
type of system discussed in [1]

‘pi*' = (‘)i* + pz [Xﬂ* ((Pi*”"’ (Pn*1 (1)1*1'“1 (ﬂn*’ V) +

+ pXp* (% 0%, @1% 0% VI + uh..

o =P [YV* (@*s ©u% 1%y 0n*, V) + (2.4)

-+ P’Yﬂ* (@*seees Pp*s @1%eens @2*, V)1 4 ph..
vi= Av + F* ((Pl*’-“’ q)n.*f ml*?“‘? ﬁ)n*) + Be..
from which it follows at once that in this case the indices are expanded in the powers
of M.
Let now the substitution

é(Pk = ght 'ﬁ’k, 50);; = e"’\pk (k=1,2,...,n) (2.5)
be made, where J is the required critical characteristic index, which is sought in the
form A= Mp 4 Agp? 4 Agpu® ... (2.6)

The quantities Ay, Ag,y.... are obtained from the condition of existence of a 2x-peri-
odic solution of a system obtained by making the substitution (2. 5) in the variational
equations, The solutions are sought in the form of series

¥ = 8O + pd® + p2e,® 4 ps...
Pa = Pp@ + ppp® + u2p, A 4 pd... 2.7
where 4,0, & (i =0, 1, 2,...) are 2g~periodic functions of T.

In the zeroth approximation we have
P® =0, O®=gqa, (s =const) (2.8)

Considering the terms of order of p, we obtain the following system of equations for
¢, and P,M:

, XD , oYy
90 = BV + B ( 5o, )0 Qg — May, PO = ( 50, )Oak (2.9)

In accordance with condition (1.6), the functions ¥, (k = 1, 2,..., r) obtained
from the second set of n equations of (2. 9) are periodic functions, Integration of the
second set of equations from (2. 9) yields

P = By (V) -+ bk (b, = const) (2.10)

The constants b, ; are obtained from the condition of periodicity of the functions
®,(0: byr = Vohyap. The functions &, are now obtained from the first set of n
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equations of (2. 9)
B0 = Byl + B (X Mo ay + by (b =const) (2.11)

The second approximation system has the form

B = B — My (B0 U + B (X ay + byl +
3x(1) 3x(1)
3 ( G ) 1BaU - Bay (X byl -+ B )
0

X {Bay (Y}t ))0 - Agagvol — V1B [Bay (V1 )o - Magve] —

ax (2) ax(2) L
=1

) Z &ja; —

axy azxgg) azxg.l)
Y : a (———--> ey Qg = (————) Wy @ 2.12
18 ( 5%, )0 x + B 597 0%1 B G900 ), Ok % ( )

oYy
Pl = — MPa(Y M) — Miayvo - B ( _"’_‘;T)o (b + By +B(X)oay] +

ax{y
+B ( 30 > [Bay (Y™)g + Mayve] +

3y(2) ay(’)
33 (G ) o8 (), 3 b
oy () vy oy ()
— B2y ( - )oak + B ( 99,2 ) Qi1 A - By a5 ( 39,00, )ﬁ
oyin (27D
) N
( > +\( 99,2 )OI"‘/=
e 6Y§\)) an N\, S 22y () N )
\( N Q(X" )o ) +\( a(p;‘z >0Vk>=0 (2.13)

s aygtn) an N s oYY AN
{ 5o, ), Y& Doyt \(W)OUV=0

we obtain, from the condition of periodicity of the second approximation, the following
system of equations for determining a;:

Using the relations

n 3P§;‘E)
2 ( Sa T 2&12V036kj) a; = 0 (k=1,2, .. n
j=1 J
Ph(z) — Ph(g) (CZI,..., QAny v07v01""’ 'Von) mm <(Yh(2))0> (2'14)
vOl = '\-’02 = L. 5= 'VOn — ‘VO

Thus the roots of the equation
ap»

— 2
'—a—a-;- 2] = 0 (“'15)

— A8 kivo

represent the first approximations to the characteristic indices,
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From the fact that the initial system (1.1) is autonomous it follows that Eq, (2.185)
regarded as an nth degree equation in 4,2 has a zero root, The necessary condition of
stability (for the first group) is, that all the remaining roots (A,%)y,..., (A,2),_, are neg.
ative (the case of a multiple zero root is not considered), The synchronous mode is un-~
stable even if a single positive or complex root exists, Suppose the roots are negative,
Then (2rn — 2) critical indices of the variational system are represented by the follow-
ing expansions :

MY = ip A2l A ple, MO = —ip | A2, | 4+ p.
(k=1,2, .., n—1)
one index will be given by ApD= Ayu® 4 ..., and the remaining one will be zero,
This shows that if the conditions of stability for the first group hold, the stability of the

system is substantially influenced by the w2-order terms appearing in the expansions of
the unknown indices which can now be computed,

Subsequently we will need the second approximations ¢ ,(® and .. Using the rela-
tions (1)
)00 (22 2 [(22) )
0P, Jo ) oo o9, /o, K

oy ) oYV oyt oy
X ( k ) v =_0_[< K ) ] (1)( i )
(o ), X0+ () Ve = o [ () v + 22 (S 0

) a(pk
oy oy Yy .
Kk (1y k (7]
Y f —_——ee = —— k )
( o )o( T (a‘Pha‘”k )on oy [( 9wy )on} (2.16)
and integrating (2.12) we obtain oy

P® = — Bha Uy + Bax[( k>Fk—
[1]

oy ayQy g oYQ NG
— r -L 32 — -
\< 09 ) k/_' oy [( 9Pk )ovk \( 0Py )ovk/_‘ i

) ) %) ; Yy il N7
+ REBa )+ Boy (VP + Bey [ (o) (=), 0|+

U U ay
~+ Ayay 6v: + B 2 a; a;,' — v, %y (chl Yo + k1 Bayg ( u + Mbyvo +
=1

Wk Jo
@247
+ (vs — R B (%gi) )Oak — May a:j‘:) Vo + Vigxhy + Agayvy — i aR(Z)
=1
01 = Blay Ly — 2MBPa, Ty + R (XP)y + Boa M, + |
+ B*Ray Uy + B20uU g - BMay a— + B2 Z a;—2— j,‘” —

j=1
oy

— B¥vyax Uy + oy Bay (ch“)o + (v — R(h'l)) Bay "(Wk- +
k

(1) (1)

) oUx + By ( a;’; )Ork +

o+ B (X + B el
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v, .
-+ May —— v T B2ay (
Vi

i3

s - 1
())L&\.’
atpk

) Vi —viBPa Uy
(1]

v , a X
B 2 a5 iy (X + (or ) —
0

(1)

0X
— MagBvg B (v — R%”) ( 3 d ) ay + ¢, (g = const)
Ox Jo

3. Conditions of stab{lity of the second group, Using the relations

R N AN 2 4
\\( 09, )o avk/+\<W>ork/=0

N v, oy oD N P
— _ (1) (1) 9
( ) A \( 5% 00, )OVk/ = =g, (¥ (&) (1)

% Y‘” U |, /(8YPN N0 P
\( )0 avk/—f_\( 0w, )on/ T o, \( ) Uk/

SN N, oy YD N
\( 3o, )O(Yk )°/+\(maq>k6mk )on/ZO

let us write out the third approximation system,
The condition of existence of periodic functions Im ¢ ,(® implies that the imaginary
parts of the quantities b ; must satisfy the system

mn ap(2) )
Z " aa '}\41 VO 6]”] Im b - (3.2)
j=1 L i v

0
=M {" th <(Y$t1))O(X$c1))0> ay + B2 << Bcokk )0 Uk> ay -+

8P aR(2 aYy® ~
-+ 2ReAhyvoa, — Z [ av; + a2, + <( a‘}’c )0 §j>J aj}

=1
The condition of solvability of the inhomogeneous system (3, 2) now yields (n — 1)
pairs of second approximations corresponding to the nonzero roots of (2, 15)

ayd
Rehy, = 32‘.[«1’%")0 X ~ (o), Ux ] o "+

k=1

ap OR(Y oY o
+2 2 ['ﬁ + 7+ (=), 6, | ol o (3.3

(r=1,2,..,n—1)

Here the indexing of the solutions of (2, 14) has been made more precise, namely,a;"”
means that the solution corresponds to the root (M), (r =1, 2,..., n — 1). Further-
more, it is assumed that all the roots of (2, 15) are simple and that the corresponding
vectors A% and al”* are normalized

S o o = 1 (3.4)
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The zero roots of (2, 16), as was shown before, correspond to the characteristic indices
of the complete variational system, the indices given by

MO = Agop? 4+ .y A® =0 (3.9)
Let the characteristic index A,® be computed to an accuracy greater than p2. The
sum of the indices of a system of equations with periodic coefficients is equal to the

value of the trace of the coefficient matrix averaged over a period, Computing this
quantity for variational system we obtain

ORP
2 (P + x‘”) = Z [ B g+ B0 (V0> —

m/(am o) m/+aav«+a\(”') DI

From this, performing transformations analogous to those given in [1] we find that the

characteristic index is defined with the required accuracy from the following relation:
n

P oR(Y aY(®
= 3 o+ o 5 ()]

k, j=1
+[B-" Y P)e (X P> — B3l ( ) U >J o aig”*} (3.7)

The conditions of stability of the second group are represented by Re A, << 0 (r = 1,
2,.., n),where ReA,, is computed according to (3, 3).
The investigation of the stability becomes much simpler in the case when the vector
function F, can be written as a sum
Fl = Z Flk (cpkv Wy, eeey mn) (38)
and the functions Y x® are linear wukh 11'espect to coordinates of the supporting system

Y @ = k()( 3 ((Pnuw Pns W1sec0s (Dn) + th( )((Pl""’ Prs @1yeees @n) V (39)

The vector V in the generating approximation is now of the form of superposition
"

(2)

Vo= 2 Vo (T oy, Vo, Vou, -y Vo) (3.10)
k=1
where the components v, are given by
Vor" = B[4 vor + Frp (v + an, Vo, Vorseers Von)l 3.11)
The equations for determining the parameters of the generating solution can therefore
be written as
Py =Py + 2 Py (k=1,2 .., n (3.12)
=1

Pki - (( ("))0 30>
Pro = ((Yi)0> — B V) (XP)> + B (2?)>

k

In this case from (2. 3) we have

Vak
= (k=1,2,...,n) 3.13
consequently B Ovo ( )
0Y(°) i\ 3P
<( ) 7;]/ \(Y(Z))o v / k’ (3.14)
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Finally, the conditions of stability of the second group have the form

" l () v -
ap R P,
ko 0% k3]
Z} "_3 v, B 3 EED JT B Vo J A;pdyr T
k=1 | - j 3
()Y( ) N ”
[ e — 2 (50) o a0 (@19
Assume now that the functions Y, (¢,..., ¢p, @ 1,-.., Oy, V) linear with respect

to the coordinates of the supporting system, have the form

(0 {2}
Y (i‘.)((plv ey (P),. (')1, ey (')”. V) == Y"\ ((‘Pla LARE ] (Pn1 (olv LRRR] (:)n) +

+ 2V E (@r, o) & (3.16)
=1

where m of the so called reverse influence parameters [4, 5] &; are connected with the

coordinate vector v by the relations §;, = (v, (;), (,;being constant vectors in the

configurational space of the supporting system and the brackets denoting scalar products,
Assume, in addition, that the vector functions F,, can be written in the form

Fin = Fix (0r 01) g5 (3.17)
The equation of motion of the supporting system can now be written as
m
v o=Av-- D Py, (Pr, Ox) Qe = Wo.s (3.18)
In the generating appl;gximation zv:e 1have
Vo == kz Voks  Vor = Avox + F (T = o, Vi) Qi (3.19)
Next expand the peric:dlic functions F,, into Fourier series
Fio= 2 FiR (v) cos [p(vt + ay) 4 0§ )] (3.20)
p =0

and seek the vectors v, in the form of series whose components satisfy the equations
— AV + FRcos[p (vt + o) +- 01 qr  (p=0,1,..)  (3.21)

The latter possess solutions of the form

VW= FR MV =12, m (3.22)

where
Vi = v cos {p vt + ap) + OF (v)) +viE sin {p (vt + @) + OF 3(v)}
) (3.23)

Here v;; and v} are certain functions of the synchronous frequency.

Now introduce the quantities K&(v)and ¥H(v) (i, /=1, 2,..., m, p =0,

...) defined from the solution of the linear problem on forced oscillations of the sup-
porting system acted upon by prescribed harmonic forces as follows:

(vi?, q,) = K% cos [p (vt + a;) + 6 (v) — ¥ (v)] (3.24)

viy = AV + cos p (vt + @) q;
According to (3. 22) and (3. 24) we have

Z 2 FO R cos [p (vt + o) -+ 0P (v) — ¥ (v)] (3.25)

=1 p=)

where
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Equations defining the parameters of the generating solution in the given particular

case will now become m . * N .
Py=Pn+ 2 D PGE=0 (3.26)

i, j==1p=0

P = (Y Docos [p (v + a5) + O — ¥R FO ) KK (vo)  (3.27)
(1)

77 Y
Py = (Yio> —B <(Y§fl))° (X)o> + B \/\( a")kk )0 Uk>

where

The only quantities dependent on the characteristics of the oscillatory system in (3.26)
are the harmonic influence and phase coefficients, Consequently, once the equations
have been set~up for a certain system of objects, they can be used to investigate the syn-
chronization problems with any supporting system, The same applies to the conditions
of stability based on these equations,

4, A system oconservative {(n the first approximation, It hasbeen
shown previously that in this case the solutions can obviously be expanded in the powers
of |.We now consider this case in more detail,

Suppose the first 2n equations of the initial system correspond to the system conser-
vative to within the p%order terms oH

@ = 0 -+ nX P (g, o) F 2. = Fo,

o,y +ud. (E=12..,0)
99,

Vv = AV + F{ (@1,-+s s G1yeves @p) F Poes 4.1

Here the vectors v, F, as well as the functions X 0, Y (I satisfy the conditions
given in Sect, 1, The quantity Hj (@, ©y) represents a partial Hamiltonian of the
kth object [1].

Under these conditions the following equations hold:

ay(h
8 (), Uy — BV (X)) =0 (4.2)
0

amk

K +u2 s

W™ = P’chn (@x, ©5) p e —

As a result it follows that the equations for the parameters of the generating solutions
and the conditions of stability are similar to the corresponding relarions given in [11.
The author thanks K, Sh, Khozhdaev for help given in the course of preparation of this
paper,
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