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Sunchronous motions of objects with one degree of freedom interacting by way of weak 

constraints are considered in this paper. The initial system of equations with a small 

parameter is analogous to that studied in Sect. 3 of [l]. Here, however, it is assumed that 
the equations defining the generating phases and the synchronous frequency constructed 

from the first order terms are satisfied identically. This leads to a particular case of the 

small parameter method requiring the higher order approximations to be considered. In 
this paper synchronous modes in a system of objects have been determined and the neces- 
sary and sufficient conditions for their stability obtained. The technical requirements 

for investigating similar systems are discussed. 

In a particular case when the system is conservative in the first approximation, the 
conditions of existence and stability become identical to those obtained in [l]. 

1. The brtic ,y,tem. Detarminrtion of cynchronou, aolutionc. 
Consider the problem of weak interactions between substantially nonlinear objects, in 
the absence of external forces, described by the following system with a multidimensional 
rapidly rotating phase 

(Pk’ = 0 k + FLXk(l) ( (Pkr Uk) + f-%Y) (%,..., %I Ol,..., On, v) + 

+ Cl%%&..., (Pn, Ol,... on, v) + pJ4... 

wk’ = py?’ (qk, Ok) + p2y!? (v 19 - - .(Pnrwr * * - ,%,4 + 

+ p3G?((P1, - ..,q-&,q,...,q, v) + p4... (k= 1, Z,..., n) (1.1) 

v = Av + F,(cp,,..., (~nv o,..., on) + p F, ((~lr..., qn, q,..., an, v) + p2 . . . 

Here (ok, ok (k = 1, 2 ,..., n) denote, respectively, the phase and frequency of the 
kth isolated object, v is aN-dimensional coordinate vector of the supporting system 
and A is a matrix with constant components. All functions in (1.1) are assumed to be 

2n-periodic in ‘pl,. . . , (Pn and ~1 > 0 is a small parameter. A superscript dot denotes 
differentiation with respect to time. 

System (1.1) is obtained from the equations of the problem dealing with synchroniza- 

tion of almost conservative objects with one degree of freedom [1] by supplementing 
the equations of motion of the objects by certain terms depending on the partial coordi- 

nates and impulses only, and proportional to the quadratic root of the small parameter. 
The additional terms are assumed to be such that the mean value of one of them obtained 

for the generating approximation and averaged over a period, is equal to zero. 
Physical prerequisites for investigation of a similar system are as follows. 

Assume that the synchronized objects are of the mechanical vibrator type. It is neces- 
sary that uniformity in the rotation of the asynchronous motor shaft is kept at a suffici- 
ently small level. The latter requirement is reflected in the assumption that all the 
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terms in the equations of motion describing the moments on the vibrator shaft are small. 
These moments can be assumed to be of varying order of smallness. It may happen that 
the mean value of one of the moments obtained in the generating approximation,averaged 
over a period, is equal to zero. In this case it is possible to obtain a system admitting 
synchronous solutions by assigning a certain order of smallness p to all the remaining 

moments, Such assumptions must be made when dealing with the problem of synchroni- 
zation of Behrens oscillation exciters. Generalization of such cases yields Eqs. (1. I). 

Under certain conditions defined below, the system (1.1) allows a synchrono~ solution 

analytic in p of the form 
%i. = ‘PkO + Pqkl + @%k‘2+ + p'**- 

ok = ok0 + p@kl + ~2~k2 + P’***Y v = vo + pv1 + .*. (1.2) 

in an interval 0 < p < po. 
Introduce now the dimensionless time z‘ = it, where y is the ~known frequency of 

the synchronous mode assumed to exist in the form of a series y = y. + l.~~i + ps.. . 
Equations (1.1) then become 

- Yl@’ xk(l) - (%# - y12 p”) @+I + fk3 [~xkf3) - 

- vlf%” xkc2) - (y&2 - Y12fi3) xk (” - (VI3 p” - 2y1v2fi3 + Y3fi2) @ k] + 1.. 

Ok’ = ,$ Yk(l) + ,h2 [pY,(2) - ,@2Yk(1)] + 

+ pa @yk(‘) - Y1p2 Yki2) - (v,@’ - Y:p’) Ykcl)] + . . . V-3) 

v’ = B (Av + F,) + p [fi F, - Qa (A v + F,)J + . . . 

We find now the synchronous solution of (1.3) in the form of (1.3). The generating 

system admits an n-parameter family of solutions of the form 

(P&O = ‘r + ak, 6) .&) = YOk, vQ = vg (z, al,**., %, YOt yO1,s-*, '0,) 

where v,is a solution of the last equation of (1.3) 23c-periodic in z with p = 0 and 
VOl = Vosf= . . . = v#-Jn = vo; a, )...) a, are the generating phase shifts. It is also 
assumed that the eigenvalues x of the system 

xw = &4 w (1.4) 

lie outside the circles with centers at zn (n is an integer) and with a radius of the order 

of p. This is equivalent to the assumption that resonance with respect to coordinates v 

is absent. 
The first approximation system has the form 

Q)kl’ = fb kl + p txk?O - fly1 

0 kl’ = 8 (ykclt)o 

VI’ = BAvu, +:W, + B (F2fo - B%Avo - B” QFJo (I.51 

Here and below the parentheses with the subscript zero denote that the quantities are 
computed for the generating sohrtion. 
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As stated above, the case under consideration is that of 

Pf’ (Y&) = 2n 1 5 (Y',"'),dz = ((IT),> = 0 
0 

(1.6) 

Therefore the first approximation to the required synchronous solution is periodic for 
any value of the generating phases and, that the condition of existence of synchronous 

modes cannot be obtained by considering the first approximation system. This means 
that here we are dealing with a particular case of the small parameter method and, 

unlike in [l], higher approximations must be taken into consideration. 

Integrating (1.5) gives 

0 r+r = flu, + yr - Rk(l), (Pkl = 82rk + fivh + akl 

Vl = VI (a,,..., %I, VrJ, VOI,..., Van) 
V 01 = . . . = Von = Vo, akl = const 

rk = s UR dz, VR = 1 [(X&Q)* - z?kfl)l dz 

(r,) = (V,> = (U,> = 0 

Here vr is a solution, &-periodic in z , of the last equation of (1.5). 
Conditions of existence of periodic functions wk2 have the form 

<(qg, (P”rk + PV, + %)> + ((fg), (PU, + VI - RP’)) + Pf' = 0 

(l-91 
where 

p%’ = ((Y’2k’)o) 

Using condition (1.6) we obtain 

Let us now consider condition (I.. 11) in greater detail. Using (1.8) and the fact that 

the functions (Yk(l))o and rk are &c-periodic in TV,..., rp,,, i.e. in z and have no 

constant terms, we find, on integrating by parts, that Eq. (1.11) can be obtained in the 

form P, = - p ((Yf)), (xp),) + P<( y$). uk) + w = 0 (w4 

where we must set V,, = Vo2 = . . . = Van = Vo. 

This constitutes the conditions of existence of a synchronous mode in an interconnected 
system of objects. Since the initial equations are autonomous, it follows that (1.12) 
will only yield y,and (n - i) generating phase differences such as e. g. ut - a,,or 

%x-l - a,,with an arbitrary value assigned to one of ak. 

Let us calculate the second approximations to qkand o k. 

using relations of the form 

<(go Vk> = RfKlf2 - qxfi”);) (1.13) 

we obtain 
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+. a#U, -1 [j” (vl - R::‘) 8$ + pw - P3vJ, -t 
k 

+ P3Ek + PF, + Pakl I(x?‘>o - I?‘!‘] + pvf’ + 
h 

+ p (vl - Ry’) 2 - vprl, - pv,w -t Uh2 
k 

(1.14) 

Wkn = p3L, -/- p2-w, + b%‘, (yfKL))O -t fl (vl - Rf’) K aufi + pup’ - p2v1u, - 

my’ 
- p3 (Lk) - p” (IV,) - (vl - R’,‘) 71Ly - 

k 
P<(ag)oKr> - 

- f-3” ( (af!) 
k 0 

( rk + voVk)> - R'K2' + vavo 

where 

Uk(‘) zz s (Yk(2))a dl, (uk(2’) = 0, Iy’) =3 s uk(2) & (1.15) 

(Ip) = 0 

2, Strbilfty of 8ynchronour 8olutfonr. The synchronous modes having 
been found, their stabilities may now be analyzed. For the generating solution the char- 

acteristic equation of the system in variations of (1.1) has a Zn-tuple unique root, i.e. 
2rz. characteristic indices in the variational equations are critical @I. Ultimately the 
stability of the synchronous solutions (1.2) is defined by the signs of the real parts of the 
critical characteristic indices, and hence only the latter quantities will be calculated. 

Following [I] we eliminate from our variational system the variations of coordinates 

of the sup~rting system and seek them in the form 
n 

where ~A,?A (k = 1, 2 ,..., n) are&t-periodic vector functions of Z. Seeking & and 

qk in the form of series in rA 

& = g,(o) + f.&(l) + $*.., qk zzz Q(O) + TV.& + ps... (2.2) 

we 

qk(‘) = g + 6k, Sk = Sk (k = 1 , 2, . . . . n) (2.4 

Elimination of the variations 81’ in accordance with (2.1) yields a system of 2n 
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equations in 8vk and tic0 k (which is not written out in full). The characteristic indices 
whose total number is 2n are equal to the critical characteristic indices of the initial 
equations in variations. The 2n-tuple root of the characteristic equation of this system 

has the corresponding elementary, nonsimple quadratic divisors of the generating solution. 

Therefore [3] the critical indices can be expanded either in whole powers of p,‘h, or in 
whole powers of I.&. 

Direct computation of the coefficients accomp~ying IA’/“, p”!z, @G gives their values 

equal to zero. It can further be shown that all the remaining terms containing fractional 

powers also vanish. The proof is particularly simple when the initial system is conserv- 
ative to within the terms of the order of ~2. 

Furthermore, by a simple change of variable this system can be reduced to another 
type of system discussed in [I] 

cp*** zzz wi* + pa 1x,1* (q$* ,..*, V)n*, oi*r...r tin** v) + 

+ fdxi2* fqt*,.*., on*, oi* I... I co**, 91 + p4*-* 

@i *’ = pa tYil* (‘PI* ,..., (Pn*, 01* ,..., On*, v) + (2.4) 
+ &a* (cpl*,..., qn*, WI* ‘I... , con*, 41 + pg..* 

v’= Av + F* (‘pl* ,..., (p,*, ml* ,..., on*) + p.s. 

from which it follows at once that in this case the indices are expanded in the powers 
of y. 

Let now the substitution 

Q, = eAr fiR, &Ok = eh’qb (k = 1, 2, . . . . n) (2.5) 
be made, where k is the required critical characteristic index, which is sought in the 
form A = &IA + Q2 -!- 3LsjAs +... 12.6) 

The quantities h,, ha,. . . . are obtained from the condition of existence of a 2n-peri- 

odic solution of a system obtained by making the substitution (2.5) in the variational 
equations. The solutions are sought in the form of series 

19& = 4&f*) + @,(I) + r”Ytkf2) + l_t3. *. 

9k = *k(o) + j.Vjk(r) + lLag/$(a) + pa... (2.7) 

where S,(i), gkW (i = 0, 1, 2,...) are&t-periodic functions of ‘C. 
In the zeroth approximation we have 

gr(0) = 0, ti,$‘) = ok (ak = const) (2.8) 

Considering the terms of order of lr., we obtain the following system of equations for 
e,(t) and *k(l): 

ef,(‘)’ =,= pqr(‘) + p (z). UK - art+, (2.9) 

In accordance with condition (1.6). the functions *k(l) (k = 1, 2,.. . , n) obtained 

from the second set of n equations of (2.9) are periodic functions. Integration of the 
second set of equations from (2.9) yields 

$k(') = pak (yk(l')O -t b,k tb*k =const) (2.10) 

me constants beg are obtained from the condition of periodicity of the functions 

*)kW: b*k = ~&,Uk. The functions tikcl) are now obtained from the first set of n 
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equations of (2.9) 

The second approximation system has the form 

(bk = const) (2.11) 

[bk tYkfl))O + ha,%1 i- 

- p2Yl ($)/k $- p ($j$%X a, -!- &‘-hl ak (g), 

Using the relations 

(2.13) 

we obtain, from the condition of periodic&y of the second approximation, the following 

system of equations for determining ai: 
f& 

zc 

CPp) 
- - h12v{‘6kj aj = 0 

dci . 
j=l f 1 

(k = 2, 2, . ..) n) 

Pk(2) = P,(S) (a, (...) a,, V~,VO~).~., Y(Jn) = ((YkqJ) 

VOl 7.z y 0% = .,. = Yen = yo 

Thus the roots of the equation 

W;2) 
- - hl‘LPkjV02 = 0 

aaj 

(2.14) 

(2.15) 

represent the first approximations to the characteristic indices. 
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From the fact that the initial system (1.1) is autonomous it follows that Eq. (2.15) 
regarded as an nth degree equation in ?~r 2 has a zero root. The necessary condition of 

stability (for the first group) is, that all the remaining roots (h12), , . . . , (h,2),_, are neg- 
ative (the case of a multiple zero root is not considered). The synchronous mode is un- 

stable even if a single positive or complex root exists, Suppose the roots are negative. 
Then (2n - 2) critical indices of the variational system are represented by the follow- 

ing expansions : 

hjp) = ip J(h,2)J “* + p..., 3,p = --if.& 1 (h,yR 1 ‘!z + p?... 

(k = 1, 2, . . . . n - 1) 

one index will be given by hncl)= &,p2 f . . . , and the remaining one will be zero. 
This shows that if the conditions of stability for the first group hold, the stability of the 

system is substantially influenced by the p2-order terms appearing in the expansions of 
the unknown indices which can now be computed. 

Subsequently we will need the second approximations $k(2) and fikc2). Using the rela- 
tions 

and integrating (2.12) we obtain 

?/$$a) ZZ - ph,a,U1, -+ Psa 

al, - &al, T * a@) 

k 
VO $ vl"khl + h2akv0 - 2 2: uj 

j=l j 

et) = /3”u L k k 

+ P3R$zkUk + P2bkUk +- p&a, 
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- 

a, + ck (‘k = co&d) 

3. Condition8 of rtrbflfty of the rroond group, Usingtherelations 

O(y~')O) + <( a;kyfk ), uk> = 0 

let us write out the third approximation system. 
The condition of existence of periodic functions Im qkt3) implies that the imaginary 

parts of the quantities bj must satisfy the system 

II 

=r a$) 
- --‘h12v026kj Im bj = 

aaj I i=L 
(3.2) 

= h1 -P”((Y’,l’)O(X’,“)o)ak + p’<(z) Uk)ak-+ 
i 0 

+ 2 Re h,v,,ak - i [$$- + T -t <( Tjo 5&j ai) 
i=l 

The condition of solvability of the inhomogeneous system (3.2) now yields (n - 1) 
pairs of second approximations corresponding to the nonzero roots of (2.15) 

Reh,, = P” i [<(of-,‘)), (x$~)J,> -<(g). uk>l at) ar)* + 
k=l 

(X.3) 

(r =1, 2, . . . . n--l) 

Here the indexing of the solutions of (2.14) has been made more precise, namely,ak(‘) 
means that the solution corresponds to the root (hl)r (7. = 1, 2,. .., n - 1). Further- 

more, it is assumed that all the roots of (2.15) are simpIe and that the corresponding 
vectors a(‘) and a(‘)* are normalized R 

2 ak 
tr) &* = 1 (3.4) 

k=l 
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The zero roots of (2.16), as was shown before, correspond to the characteristic indices 
of the complete variational system, the indices given by 

h,(l) = A&t2 + . ..) An(s) = 0 (3.5) 

Let the characteristic index h,(l) be computed to an accuracy greater than p2. The 

sum of the indices of a system of equations with periodic coefficients is equal to the 
value of the trace of the coefficient matrix averaged over a period. Computing this 
quantity for variational system we obtain 

i (p + h’,2’) = p2 i: [p -;g! + p”((xp), (Y$,) -- 
f=l k=l 

-p"((~)ouk)+p$$ +p((~),,~k)]+~3... (3.6) 

From this, performing transformations analogous to those given in [l] we find that the 
characteristic index is defined with the required accuracy from the following relation : 

k, j=l 

+ 8” <(Yc,l’)o (XP)o) - P3’ ,( q). n,>],r) &‘“) (3.7) 

The conditions of stability of the second group are represented by Re &,, < 0 (r - 1, 
2 ,**, n),where Re h,, is computed according to (3.3). 

The investigation of the stability becomes much simpler in the case when the vector 

function F, can be written as a sum 7L 

F, = 2 Flh. @k, 01, . ..t %) (3.8) 

and the functions Ykc2) 
k=l 

are linear with respect to coordinates of the supporting system 

Ykf2) = Yb.cP) (cpr ,... , qJn, Ol,..., on) + YJzJ2) (91, . . . . (Pn, Ol,..., on) v (3.9) 

The vector v in the generating approximation is now of the form of superposition 

\‘O = i VOk (‘t + ak, VO, Yol, . . ., YOn) (3.10) 
k=l 

where the components vok are given by 

VOk’ = B [A vok + Fe (r + akr ~0, ~olr..., ~on)l (3.11) 

The equations for determining the parameters of the generating solution can therefore 

be written as 
pk=pk,+ i pkj (k = 1 ( 2. . ..) n) 

j=l 

pkj = ((YEj, vjo) 

(3.12) 

‘k0 = ((y~~)o) - fi <(yi(“), (xf’),) + p (trk (z),,‘> 
In this case from (2.3) we have 

av,k 
Sk = x 

(k = 1, 3, . . . . n) 
consequently 

\ _ / (2) 21. _ apki 
oG/ - \(ykL)O av, / 

avo 

(3.13) 

(3.14) 
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Finally, theconditions of stability of the second group have the form 

+ p ((Yf’)” (Xf’)“) - (3” (($go Uk) a,;,o:,i < 0 (3.15) 

Assume now that the functions Y k(‘2) (cpl, . . . , cpn, o 1,. . . , (11~. v) linear with respect 

to the coordinates of the supporting system, have the form 

Y(,?‘((f,l, . . ., v,,. (‘)I, . ..) co,,. v) -= YF,: (cp,, a.-, rPnt (017 ..*t (,),I) + 

i- i Y$‘(cpk, q.) Ei (3.16) 
$=I 

where m of rhe so called reverse influence parameters [4. 51 & are connected with the 

coordhate vector v by the relations Ei = (v, qi), qi being constant vectors in the 

configurational space of the supporting system and the brackets denoting scalar products. 

Assume, in addition, that the vector functions Flk can be written in the form 

F,, = Flk ((PJL, ok) qk (3.17) 

The equation of motion of the supporting system can now be written as 

v = Av + il: Flk ((Ph., QJ ql, + /J_ . . . (X18) 
rL=l 

In the generating approximation we have 

\.O = i vOk, vOk = Av,,k + Flk (‘G + ak, Yk) qk t.3.19) 
k=l 

Next expand the periodic functions Flk into Fourier series 

Il’lh. = i F$) (Y) cos [p(vt + Xk) $- Ojp’(Y)] 
p=o 

(X20) 

and seek the vectors vOk in the form of series whose components satisfy the equations 

vi;“’ = Avjp’ + PIP,’ co.!+ [i, (Yt -+ ilk) + &‘] q h k (f’ X 0, i, . ..) it’.:! 1) 

The latter possess solutions of the form 
Yi;“’ (P) :zz Pi;’ (v) vi;= (k = 1, 2, . ..) m) (KU) 

where 

Vi+ (G) = v:",' cos {p (vt + ak) + OIp) (Y)} +v(hpz’ sin {p (Yt -I- ad + Olp’ Cv)> 

Here vi;’ and vK’ are certain functions of the synchronous frequency. 
(3.23) 

Now introduce the quantities KS’(v) and Y!$)(Y) (i, i = 1, z,..., m, p = 0, 
1,. . .) defined from the solution of the linear problem on forced oscillations of the sup- 
porting system acted upon by prescribed harmonic forces as follows: 

(vi;) q.) = K!P' 
I' I 23 COS [fl (Vi! + GCj) + @$“’ (Y) - Yjr’ (y)l (3.24) 

where 
vj;) E A \Jg) + cos P (Yt + a,) qj 

According to (3.22) and (3.24) we have 

;r = i 5 ~‘~$$‘cos [f) (Yt + “j) + e;.“‘(Y) - Yjp) (v)] (US) 
/=1 p=,, 
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Equations defining the parameters of the generating solution in the given particular 
case will now become 

PI, z Q& + i 5 Pip; = 0 (S.Zli) 
i, j=lp=O 

where 
Pfii = ((YiT)s cos [p (Z + aj) + @lip) - Y”~~‘]) FE’ (~0) K!g’ (~0) (3.27) 

P& = qY(k3)o) - p ((YP)o (XP)o> + P <( $ ), UK) 

The only quantities dependent on the characteristics of the oscillatory system in (3.26) 

are the harmonic influence and phase coefficients. ~o~equently, once the equations 

have been set-up for a certain system of objects, they can be used to investigate the syn- 

chronization problems with any supporting system. The same applies to the conditions 

of stability based on these equations. 

4, A styrtam oon#srvotive In the first approximation, It has been 
shown previously that in this case the solutions can obviously be expanded in the powers 

of I_L.We now consider this case in more detail. 
Suppose the first Zn equations of the initial system correspond to the system conser- 

vative to within the p2-order terms 

qli* = cl)fi + pxf’ (cpk, QJ + 11: **a zz z+ $ .,. k 

@k . = pYjy (r&., Ok) -f- i_cz I.. y= - 2 + $ *.* (k = i, “, ..‘, n) 

v’ = Av + F, (cpl ,..., qn, flxlt..., on) + P... (4.1) 

Here the vectors v, F, as well as the functions X kf1), Yk(Q satisfy the conditions 

given in Sect. 1. The quantity fi k (vk, wk) represents a partial Hamiltonian of the 
kth object [l]. 

Under these conditions the following equations hold: 

p ((~),u$ - p ((Yc,l)), (xg’)o) = 0 (4.2) 

As a result it follows that the equations for the parameters of the generating solutions 
and the conditions of stability are similar to the corresponding relations given in El]. 

The author thanks K. Sh. Khozhdaev for help given in the course of preparation of this 

paper. 
BIBLIOGRAPHY 

1. Na 
0 fg 

aev,R.F. and Khozhdaev, K. Sh., Synchronous motions in a system 
objects with supporting constraints. PMM Vol. 31, N’4, 196‘7. 

2. Malkin, I. G., Certain Problems of the Theory of Nonlinear Oscillations. M., 
Gostekhizdat, 1956. 

3. Kushul’. M. Ia., On the quasiharmonic systems close to systems with constant 
coefficients, in which pure imaginary roots of the fundamental equations have 
nonsim 

4. Khozh a 
le elementary divisors. PMM Vol.22, No4, 1958 
aev, K.Sh., On excitation of vibrations. In&. zh. MTT, NQ2, 1968. 

5. Nagaev, R. F., Synchronization of finite-dimensional “force” generators. PM?vl 
Vol.32 NQ5, 1968. 

Translated by L. K, 


